

A NECESSARY CONDITION FOR $A * B$ TO BE LERF $a=b$

BY

RITA GITIK AND ELIYAHU RIPS

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

This paper examines some necessary conditions for the product $A * B$ to be LERF.
 $a=b$

A group G is LERF (locally extended residually finite) if for any finitely generated subgroup C of G and for any element $g \in G \setminus C$ there exists a finite index subgroup G_0 of G which contains C but not g .

A free group is LERF [Hall] and a free product of free groups with cyclic amalgamation is LERF [B-B-S].

In [Gi] sufficient conditions on a LERF group B and an element $b \in B$ of infinite order were given such that the group $G = A * B$ is LERF for any LERF group A and any element $a \in A$ of infinite order.

On the other hand, the examples show [Ri] that a free product of LERF groups with cyclic amalgamation need not be LERF.

In this note we study some necessary conditions for such a product to be LERF. The comparison shows that there is still a considerable gap between necessary and sufficient conditions which requires additional investigation.

We would like to thank Professor A. Mann for finding an error in an early version of the paper.

THEOREM. *Let D be a free abelian group with the basis $d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8$. Let $A = D \rtimes \langle a \rangle$, where $a^{-1}d_1a = d_1d_2, a^{-1}d_2a = d_2, a^{-1}d_3a = d_4, a^{-1}d_4a = d_3, a^{-1}d_5a = d_6, a^{-1}d_6a = d_5, a^{-1}d_7a = d_7, a^{-1}d_8a = d_8$.*

*Let B be any group containing an element b of infinite order. If B contains an element c such that $bc = cb$ and $c \notin \langle b \rangle$, then $G = A * B$ is not LERF, though A is LERF.*

Received April 26, 1990

PROOF.

$D \times \langle a^2 \rangle$ is finitely generated nilpotent and of index 2 in A , so A is LERF.

Let us show that G is not LERF.

Consider the subgroup $C = \langle ad_2, cd_1, d_7d_3cd_3, d_4cd_4, d_8d_5cd_5, d_6cd_6, ad_7d_8 \rangle$.

We show that:

(a) $a \notin C$;

(b) for any subgroup H containing C , either $a \in H$ or $\langle a \rangle \cap H = \{1\}$.

Hence G is not LERF because the element a belongs to any finite index subgroup of G containing C .

In order to prove (a) let us determine $C \cap A$.

Let $w_1, w_2 \in \{cd_1, d_3d_7cd_3, d_4cd_4, d_5d_8cd_5, d_6cd_6\}$, $\epsilon = \pm 1$ and $\delta = \pm 1$. Then $w_1^\epsilon = u_1^{-1}c^\epsilon v_1$ and $w_2^\delta = u_2^{-1}c^\delta v_2$, where $u_1, u_2, v_1, v_2 \in \{1, d_1, d_7^{-1}d_3^{-1}, d_3, d_4^{-1}, d_4, d_8^{-1}d_5^{-1}, d_5, d_6^{-1}, d_6\}$.

Note that the elements ad_2 and ad_7d_8 commute.

CLAIM. *For any $k, l \in \mathbb{Z}$, $h_{k,l} = v_1(ad_2)^k(ad_7d_8)^l u_2^{-1} \notin \langle a \rangle$ unless $k = l = 0$, $w_1 = w_2$ and $\epsilon = -\delta$.*

We prove the claim in several steps.

(1) Let $D_0 = \langle d_3, d_4, d_5, d_6, d_7, d_8 \rangle$, $\bar{A} = A/D_0$. We have $d_1ad_1^{-1} = ad_2$, therefore, in \bar{A} , if \bar{v}_1 and \bar{u}_2 are in $\{\bar{1}, \bar{d}_1\}$, then $\bar{v}_1(\bar{a}\bar{d}_2)^k\bar{a}^l\bar{u}_2^{-1} \notin \langle \bar{a} \rangle$ unless $\bar{v}_1 = \bar{u}_2 = \bar{d}_1$ and $2k + l = 0$ or $\bar{v}_1 = \bar{u}_2 = \bar{1}$ and $k = 0$.

If $v_1 = u_2 = d_1$, then in view of $d_1ad_1^{-1} = ad_2$ it follows that $h_{k,l} = v_1(ad_2)^k(ad_7d_8)^l u_2^{-1} = d_1(a^{k+l}d_2^kd_7^ld_8^l)d_1^{-1} = a^{k+l}d_2^{2k+l}d_7^ld_8^l$, so $h_{k,l} \in \langle a \rangle$ implies that $l = 0$ and $2k + l = 0$, hence $k = l = 0$, while $w_1 = w_2 = cd_1$, $\epsilon = 1$ and $\delta = -1$.

(2) If $v_1 = d_1$ and $u_2 \neq d_1$ or $v_1 \neq d_1$ and $u_2 = d_1$, then for $D_1 = \langle d_2, d_3, d_4, d_5, d_6, d_7, d_8 \rangle$ we have $h_{k,l} \equiv a^{k+l} \cdot d_1^{\pm 1} \pmod{D_1}$, so $h_{k,l} \notin \langle a \rangle$.

(3) If $v_1 \neq d_1$ and $u_2 \neq d_1$, then for $D_2 = \langle d_3, d_4, d_5, d_6, d_7, d_8 \rangle$ we have $h_{k,l} \equiv a^{k+l}d_2^k \pmod{D_2}$, so if $h_{k,l} \in \langle a \rangle$, then $k = 0$.

Now we assume that $v_1 \neq d_1$, $u_2 \neq d_1$ and $k = 0$.

(4) If $u_2 = v_1 = d_7^{-1}d_3^{-1}$ or $v_1 = u_2 = d_8^{-1}d_5^{-1}$, then for $D_3 = \langle d_1, d_2, d_3, d_4, d_5, d_6 \rangle$ we have that $h_{0,l} \equiv a^l d_7^l d_8^l \pmod{D_3}$, so $h_{0,l} \in \langle a \rangle$ implies $l = 0$, $w_1 = w_2 = d_3d_7cd_3$ or $w_1 = w_2 = d_5d_8cd_5$ and $\epsilon = -\delta$.

(5) In all the other cases $h_{0,l} \equiv a^l d_7^{l+\eta_1} d_8^{l+\eta_2} \pmod{D_3}$, where $\eta_1 = -1$ if $v_1 = d_7^{-1}d_3^{-1}$, $\eta_1 = 1$ if $u_2 = d_7^{-1}d_3^{-1}$ and $\eta_1 = 0$ otherwise, and $\eta_2 = 1$ if $u_2 = d_8^{-1}d_5^{-1}$, $\eta_2 = -1$ if $v_1 = d_8^{-1}d_5^{-1}$ and $\eta_2 = 0$ otherwise. Hence $h_{0,l} \in \langle a \rangle$ implies $l + \eta_1 + \eta_2 = 0$, so $\eta_2 = \eta_1 = 0$ and $l = 0$.

For $v_1, u_2 \in \langle 1, d_7^{-1}d_3^{-1}, d_4^{-1}, d_4, d_8^{-1}d_5^{-1}, d_5, d_6^{-1}, d_6 \rangle$ we have that $h_{0,0} = v_1 u_2^{-1} \in \langle a \rangle$ only when $v_1 = u_2$, so $w_1 = w_2$ and $\epsilon = -\delta$, as required.

The claim is proved, so by the normal form theorem in the amalgamated products $C \cap A = \langle ad_2, ad_7d_8 \rangle$, hence $a \notin C \cap A$. \square

Let H be a subgroup of G containing C and a^n .

(b) is a consequence of (c) and (d).

(c) If $n = 2m + 1$, then $a \in H$.

Indeed, for n odd, $a^{-n}d_3a^n = d_4$, $a^{-n}d_4a^n = d_3$, $a^{-n}d_5a^n = d_6$ and $a^{-n}d_6a^n = d_5$, so $a^{-n}(d_3d_7cd_3)a^n(d_4cd_4)^{-1} = d_7d_4cd_4 \cdot (d_4cd_4)^{-1} = d_7 \in H$, and $a^{-n}(d_5d_8cd_5)a^n(d_6cd_6)^{-1} = d_8d_6cd_6 \cdot (d_6cd_6)^{-1} = d_8 \in H$, hence $ad_7d_8 \cdot d_8^{-1}d_7^{-1} \in H$.

(d) If $n = 2m$, then $a^m \in H$.

Indeed, $d_1ad_1^{-1} = ad_2$, so $(cd_1)(a^{2m}(ad_2)^{-m})(cd_1)^{-1} = c(d_1(a^m d_2^{-m})d_1^{-1})c^{-1} = ca^m c^{-1} = a^m \in H$. \square

REMARK 1. Taking $B = \langle c \rangle$, $b = c^k$, we obtain that adjunction of roots need not preserve the property LERF.

REMARK 2. If B contains an element c_0 such that $bc_0 = c_0b^{-1}$, then considering the subgroup $C_0 = \langle ad_2, c_0d_1, d_7d_3c_0d_3c_0^{-1}d_3, d_4c_0d_4c_0^{-1}d_4, d_8d_5c_0d_5c_0^{-1}d_5, d_6c_0d_6c_0^{-1}d_6, ad_7d_8 \rangle$ we similarly show that $G = \underset{a=b}{A * B}$ is not LERF. \square

COROLLARY. Let B be a LERF group and $b \in B$ be of infinite order. If for any LERF group A and $a \in A$ of infinite order $\underset{a=b}{A * B}$ is LERF, then $N_B(b) = \langle b \rangle$. \square

REFERENCES

- [B-B-S] A. M. Brunner, R. G. Burns and D. Solitar, *The subgroup separability of free products of two free groups with cyclic amalgamation*, Contemp. Math. **33** (1984), 90-115.
- [Gil] Rita Gitik, *Graphs and LERF groups*, preprint.
- [Hall] M. Hall, Jr., *Coset representations in free groups*, Trans. Am. Math. Soc. **69** (1949), 431-451.
- [Rip] E. Rips, *An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup*, Isr. J. Math. **70** (1990), 104-110.